工业铸造厂废气有哪些有效的处理方案

随着现代社会对节能的要求和对自然环境保护的呼声越来越高,工业铸造行业快速发展所排出来的废气带来了严重的环境污染,,这种铸造类废气种类复杂,污染排放不仅有废气还有粉尘铁屑等粘性物质,比较难以处理。我们针对工业铸造废气特性以及浓度不稳定的情况采用活性炭吸附浓缩催化燃烧装置对工业铸造废气进行有效处理。活性炭催化燃烧装置,采用催化剂降低有机物氧化所需要的活化能,并提高反应速率,从而可以在较低的温度下进行氧化燃烧,使得有机物转化为无害物质。在催化燃烧时,一般都采用固体催化剂,因此涉及的是非均相催化反应。常用的催化剂主要是载体催化剂,即将催化剂的活性组分沉积于陶瓷或金属载体上。催化燃烧氧化温度低,使得有害物质的转化操作更为经济,其通过燃烧将废气中可氧化的组分转化为无害物质,在废气中含纯碳氢化合物的情况下,即转化为二氧化碳和水,燃烧过程中始终伴随热量的产生,我们将采取*经济的成本达到*大的热量回收和利用方式来进行工业铸造车间废气处理。

活性炭吸附浓缩催化燃烧废气治理工艺论述

催化剂定义催化剂是一种能提高化学反应速率,控制反应方向,在反应前后本身的化学性质不发生改变的物质。催化燃烧装置的工艺组成不同的排放场合和不同的废气,有不同的工艺流程。但不论采取哪种工艺流程,都由如下工艺单元组成。①废气预处理为了避免催化剂床层的堵塞和催化剂中毒,废气在进入床层之前必须进行预处理,以除去废气中的粉尘、液滴及催化剂的毒物。②预热装置预热装置包括废气预热装置和催化剂燃烧器预热装置。因为催化剂都有一个催化活性温度,对催化燃烧工艺来说催化剂起燃温度,必须使废气和床层的温度达到起燃温度才能进行催化燃烧,因此,必须设置预热装置。但对于排出的废气本身温度就较高的场合,如漆包线、绝缘材料、烤漆等烘干排气,温度可达300℃以上,则不必设置预热装置。预热装置加热后的热气可采用换热器和床层内布管的方式。预热器的热源可采用烟道气或电加热,目前采用电加热较多。当催化反应开始后,可尽量以回收的反应热来预热废气。在反应热较大的场合,还应设置废热回收装置,以节约能源。预热废气的热源温度一般都超过催化剂的活性温度。为保护催化剂,加热装置应与催化燃烧装置保持一定距离,这样还能使废气温度分布均匀。从需要预热这一点出发,活性炭吸附浓缩催化燃烧法*适用于连续排气的净化,若间歇排气,不仅每次预热需要耗能,反应热也无法回收利用,会造成很大的能源浪费,在设计和选择时应注意这一点。③吸附催化燃烧装置一般采用固定床催化反应器。反应器的设计按规范进行,应便于操作,维修方便,便于装卸催化剂。在进行催化燃烧的工艺设计时,应根据具体情况,对于处理气量较大的场合,设计成分建式流程,即预热器、反应器独立装设,其间用管道连接。对于处理气量小的场合,可采用催化焚烧炉,把预热与反应组合在一起,但要注意预热段与反应段间的距离。

移动伸缩式喷漆房废气用哪种工艺处理比较好?

移动喷漆房喷漆工艺现广泛应用于机械、电气设备、家电、汽车、船舶、家具等行业。喷漆原料都是由不挥发份和挥发份组成,不挥发份包括成膜物质和辅助成膜物质,挥发份指溶剂和稀释剂(主要以二甲苯为主)。移动喷漆房废气中的有机气体来自溶剂和稀释剂的挥发,有机溶剂不会随油漆附着在喷漆物表面,在喷漆和固化过程将全部释放形成有机废气。移动喷漆房在喷漆过程挥发的二甲苯废气量约占稀释剂用量的30%,另有70%在烘干过程挥发。喷漆涂装作业中涂料和溶剂雾化后形成的二相悬浮物逸散到周围的空气中,污染了空气。根据移动喷漆房废气特征上海蓝叶环保科技有限公司采用催化燃烧废气处理装置。催化燃烧废气处理装置,主要是利用焚烧炉在催化剂的作用下将有机废气进行燃烧或氧化转化为水和CO2,适用于漆包线、机械、电机、化工、仪表、汽车、发动机、塑料、电器等行业的有机废气净化。催化燃烧由于起燃温度低,是一种较为理想的通过催化反应(无明火)处理有机污染物的方法,具有适用范围广、结构简单、净化效率高、节能、无二次污染等优点,已在国内外得到了广泛应用。催化燃烧净化装置具有操作简单、自动化程序高、能有效的处理各种有机废气污染物,处理浓度<=10g/m3。催化燃烧处理技术结构及原理:催化燃烧净化装置主要由阻火器、热交换器、催化反应床、风机这几个主要部件组成,与直接燃烧相比,催化燃烧温度较低,燃烧比较完全。催化燃烧所用的催化剂为具有大比表面的金属氧化物。催化燃烧法是将有机污染物的废气、在催化剂铂、钯等催化剂的作用下,可以在较低温度下将废气中的有机污染物氧化成二氧化碳和水。废气经阻火器过滤后,通过主进阀、旁通阀的同步反向切换调节进入热交换器,热交换器的热气升高一定温度后进入预热室、经过预热室的加热使废气升温到催化起燃温度(250度)然后进入催化反应床,在催化剂的活性作用下,有机废气进行氧化反应生成无害的水和二氧化碳,并放出一定的热量。反应后的高温气体再次进入热交换器,经换热后,*后以较低的温度经引风机排入大气。催化燃烧是借助催化剂在低温下(200-400度)实现对有机物的完全氧化。

袋式除尘器设计时需注意的事项

一、使用温度袋式除尘器的使用温度是设计的重要依据,使用温度与设计温度出现偏差,会酿成严重后果,因为温度受下述两个条件所制约:一是不同滤料材质所允许的*高承受温度(瞬间允许温度和长期运行温度)有严格限制;二是为防止结露,气体温度必须保持在露点20℃以上。对高温气体,必须将其冷却至滤料能承受的温度以下,冷却方式有多种,较为典型的有自然风管冷却、强制风冷、水冷等,具体可按不同的工艺及冷却温度、布置尺寸要求等进行设计选型。二、处理风量处理风量决定着布袋除尘器的规格大小,一般处理风量都用工况风量,设计时一定要注意除尘器使用场所及烟气温度,若布袋除尘器的烟气处理温度已经确定,而气体又采取稀释法冷却时,处理风量还要考虑增加稀释的空气量。考虑今后工艺变化,风量设计指值在正常风量基础上要增加5%~10%的保险系数,否则今后一旦工艺调整增加风量,布袋除尘器的过滤速度会提高,从而使设备阻力增大,甚至缩短滤袋使用寿命,也将成为其他故障频率急剧上升的原因,但若保险系数过大,将会增加除尘器的投资和运转费用。箱式脉冲喷吹除尘器中,处于不同部位的各条滤袋,清灰强度存在较大差异,且一般气耗量较大,滤袋长度受到限制,清灰效果对离线阀的气密性依赖较大,所以箱式喷吹多用于中小型除尘器。过滤风速因布袋除尘器的形式、滤料的种类及特性的不同而有很大差异,处理风量一经确定,即可根据确定的过滤风速来决定所必须的过滤面积。三、入口含尘浓度入口含尘浓度常以标态体积含尘质量表示,就入口含尘浓度,布袋除尘器设计时要作如下考虑:1、设备阻力和清灰周期。入口含尘浓度增大,相同过滤面积情况下,设备阻力也增加,为维持一定的设备阻力,清灰周期也相应缩短。2、滤料和箱体的磨损。在粉尘具有强磨损的高浓度状况下,磨损量与含尘浓度成正比,在除尘器入口处应有导流耐磨等处理技术,如烧结粉尘、氧化铝粉、硅砂粉等。3、预除尘器及过滤风速。在入口含尘浓度很高的情况下,应设计较低的过滤风速及设计预除尘器,但如果设计具有初级沉降功能的结构形式,也可取消预除尘器。4、排灰装置。排灰能力是以能排出全部收集的粉尘为标准,排出的粉尘量,等于入口、出口含尘浓度差值与处理风量之积,多级排灰装置能力设计应以下一级大于上一级排灰能力为准。四、气体成分除特殊情况外,布袋除尘器所处理的气体,多半是环境空气或炉窑烟气。通常情况下布袋除尘器的设计按处理空气来计算。只有在密度、黏度、质量热容等参数关系到风机动力性能和管道阻力的计算及冷却装置的设计时,才考虑气体的成分。在许多工况的烟气中多含有水分,随着烟气中水分的增加,布袋除尘器的设备阻力和风机能耗也随之变化。含尘气体中的含水量,可以通过实测来确定,也可以根据燃烧、冷却的物质平衡进行计算。烟气中有无腐蚀性气体是决定滤料、除尘器壳体材质及防腐等选择所必须考虑的因素。另外,若烟气中有有毒气体,一般都是微量的,对装置的性能没有多大影响,但在处理此类含尘烟气时,布袋除尘器必须采用不漏气的结构,而且要经常维护,定期检修,避免有毒气体泄露造成安全事故。

除尘器系统管道的防爆措施

除尘器系统管道当输送介质中含有可燃气体或易燃易爆粉尘时,管道系统设计应采取以下防爆措施。(1)加强可燃物浓度的检测与控制为防止管道系统内可燃物浓度达到爆炸浓度,应设置必要的检测仪器,以便经常监视系统工作状态,实现自动报警。在系统风量设计时,除考虑满足净化要求外,还应校核其中可燃物浓度,必要时加大设计风量,以保证输送气体中可燃物浓度低于爆炸浓度下限。(2)消除火源对可能引起爆炸的火源严格控制。如选用防爆风机,并采用直联或轴联传动方式;采用防爆型电气元件、开关、电机;物料进入系统前,先消除其中的铁屑等异物。(3)阻火与泄爆措施设计可燃气体管道时,应使管内*低流速大于气体燃烧时的火焰传播速度,以防止火焰传播;在管道上装设内有数层金属网或砾石的阻火器;在管道系统的局部地点(死角)装设泄爆孔或泄爆门;气体管道中采用的连接水封和溢流水封亦能起一定的泄爆作用。(4)设备密闭当除尘器管道与设备密闭不良时,可能发生因空气漏入或可燃物泄漏而燃烧爆炸。因此,必须保证设备系统的密闭性。(5)厂房通风要求管道系统达到**密闭是不可能的,所以必须加强厂房通风,以保证车间内可燃物浓度不致达到危险的程度。而且,对于因设备发生偶然事故或系统发生运行故障时会散发大量可燃气体的车间。应设置事故排风系统,以备急需时使用。